Relating different Polynomial-LWE problems

Mădălina Bolboceanu

SECITC 2018

Bitdefender

Mădălina Bolboceanu

Relating different Polynomial-LWE problems

SECITC 2018 1 / 21

• We give relations between the hardness of PLWE^f and PLWE^h for different polynomials f and h.

• We find a polynomial *f* for which:

PLWE ^f at least as hard as	PLWE ^h	
	for exponentially many polynomials h	

Lattices in cryptography

Mădălina Bolboceanu

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Lattices

Lattice

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be linearly independent vectors from \mathbb{R}^m . Then

$$L = L(\mathbf{v}_1, \dots, \mathbf{v}_n) = \{\sum_{i=1}^n a_i \mathbf{v}_i | a_i \in \mathbb{Z}\}$$

is the lattice generated by them.

 $\lambda_1(L)$:= the length of a shortest nonzero vector from L.

ApproxSVP $_{\gamma}$

Find a nonzero vector $\mathbf{x} \in L$ s.t. $\|\mathbf{x}\| \leq \gamma \lambda_1(L)$.

Learning with Errors [?]

Let
$$\mathbf{s} \in \mathbb{Z}_q^n, m \ge n, \alpha q > \sqrt{n}$$

 $\begin{cases} \mathbf{A} \stackrel{u}{\leftarrow} \mathbb{Z}_q^{m \times n} \\ \mathbf{e} \leftarrow D_{\mathbb{Z}^m, \alpha q} \end{cases}$

Search: Given LWE samples, find **s**. **Decision**: Distinguish LWE samples from uniform samples.

[?]: Solve **Search**-LWE_{q, αq} $\xrightarrow{\text{quantum}}$ Solve ApproxSVP_{γ}, for $\gamma \leq \text{poly}(n)$.

✓ quantum resistant

 \checkmark all known algorithms of ApproxSVP are exponential in *n*.

X large size of keysX slow computations

Take structured matrices!

Relating different Polynomial-LWE problems

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Towards efficiency

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SVP in general and ideal lattices ([? ?])

SECITC 2018 9 / 21

A new problem which is at least as hard as exponentially many PLWE problems
 Middle Product Learning with Errors (MP-LWE) [?]

MP-LWE	at least as hard as	PLWE ^f	
		for exponentially many polynomials f	

• The hardest instances of PLWE

A new problem which is at least as hard as exponentially many PLWE problems
 Middle Product Learning with Errors (MP-LWE) [?]

MP-LWE	at least as hard as	PLWE ^f	
		for exponentially many polynomials f	

• The hardest instances of PLWE

Lattices in cryptography

æ

Image: A match a ma

We find a reduction from PLWE^f to PLWE^f^{og}, for arbitrary monic polynomials f and g in ℤ[X].

• We notice interesting consequences of this reduction involving cyclotomic polynomials.

Polynomial LWE [?]

 $f \in \mathbb{Z}[X]$, monic, deg f = n, q prime. $R := \mathbb{Z}[X]/(f)$, $R_q := R/qR \simeq \mathbb{Z}_q[X]/(f)$. Let $s \in R_q$.

$$\mathsf{PLWE}_{q,D_{\alpha q}}^{f} \text{ distribution} : \begin{cases} a \stackrel{u}{\leftarrow} R_{q} \\ e \leftarrow D_{\alpha q} \text{ over } \mathbb{R}^{n} \simeq \mathbb{R}[X]/(f) \\ \text{output: } (a, a \cdot s + e \mod qR) \end{cases}$$

Search: Given PLWE samples, find *s*. **Decision**: Distinguish PLWE samples from uniform samples.

Reduction from PLWE^{f} to $\mathsf{PLWE}^{f \circ g}$

 $f, g \in \mathbb{Z}[X]$, monic, deg f = m, deg g = n. We consider the $mn \times mn$ matrix:

$$\mathbf{T}_g = \begin{pmatrix} 1 & \dots & g^{m-1} & X & \dots & Xg^{m-1} & \dots & X^{n-1} & \dots & X^{n-1}g^{m-1} \end{pmatrix}$$

• It holds both in search and decision variants.

Mădălina Bolboceanu

Relating different Polynomial-LWE problems

SECITC 2018 14 / 21

Proof (sketch)

Main idea: a map T sending PLWE^f to PLWE^{fog} and uniform to uniform • $\{(a_i^*, b_i^*)\}_{i \in [n-1]} \leftrightarrow \mathsf{PLWE}^f$ or uniform • $\tilde{s}_1, \tilde{s}_2, \dots, \tilde{s}_{n-1} \xleftarrow{u} \mathbb{Z}_q[X]/(f)$

$$(a_j, b_j) \xrightarrow{T} (\tilde{a}_j, \tilde{b}_j)$$

$$\tilde{a}_j = a_j \circ g + X a_1^* \circ g + \ldots + X^{n-1} a_{n-1}^* \circ g$$
$$\tilde{b}_j = b_j \circ g + X b_1^* \circ g + \ldots + X^{n-1} b_{n-1}^* \circ g + \tilde{a}_j \sum_{i \in [n-1]} X^i \tilde{s}_i \circ g$$

$$\star \text{ uniform } \stackrel{T}{\to} \text{ uniform } \star \text{ PLWE}_{q,D_{\alpha q}}^{f}(s) \stackrel{T}{\to} \text{ PLWE}_{D}^{f \circ g}(\tilde{s})$$

Lattices in cryptography

2 Contribution

Mădălina Bolboceanu

Image: A mathematical states and a mathem

Relating $PLWE^{f}$ for cyclotomic f's

• cyclotomics in crypto: e.g. homomorphic schemes [?], [?], key exchange schemes [?]

•
$$\zeta_n := e^{2\pi i/n} \in \mathbb{C},$$

 $\phi_n(X) = \prod_{k \in \mathbb{Z}_n^*} (X - \zeta_n^k) \in \mathbb{Z}[X]$
• $\operatorname{rad}(n) := p_1 p_2 \cdot \ldots \cdot p_r,$
if $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdot \ldots \cdot p_r^{\alpha_r}$

* Using
$$\phi_n(X) = \phi_{\mathsf{rad}(n)}(X^{n/\mathsf{rad}(n)})$$

$PLWE_{q,D_{\alpha,q}}^{\phi_n}$	at least as hard as	$PLWE_{q,D_{\alpha q}}^{\phi_{rad(n)}}$
given k samples		given $k + \frac{n}{rad(n)} - 1$ samples

* Using
$$\phi_n(X) = \phi_p(X^{n/p})$$
, for $n = p^r$, p prime

 $\begin{array}{c} \mathsf{PLWE}_{q,D_{\alpha q}}^{\phi_n} & \text{at least as hard as} \\ \text{given } k \text{ samples} & \text{given } k + \frac{n}{p} - 1 \text{ samples} \end{array}$

SECITC 2018 17 / 21

Reductions to PLWE^{ϕ_n}

• $\beta \in \mathbb{Z}[\zeta_n], f_\beta :=$ the minimal polynomial of β over $\mathbb{Q}, f_\beta \in \mathbb{Z}[X]$ $g_\beta \in \mathbb{Z}[X]$ s.t. $\beta = g_\beta(\zeta_n)$

- Example of β 's: $n = 2^t$, $\beta = \zeta_n^{2^u}$. Then $f_\beta = \phi_{2^{t-u}}$ and $g_\beta = X^{2^u}$, so $\phi_n = f_\beta \circ g_\beta$.
- In general, $\phi_n | f_\beta \circ g_\beta$.

In the case of power-of-two cyclotomic ϕ_n :

* Let **A** be a $\varphi(n) \times d$ matrix, $d \ge \varphi(n)$,

$$\mathbf{A}_{i,j} = \begin{cases} (-1)^k \text{ if } j = \varphi(n) \cdot k + i \\ 0 \text{ else} \end{cases}$$

- $\mathsf{PLWE}^{f \circ g}$ is at least as hard as $\mathsf{PLWE}^f,$ for any monic $f,g \in \mathbb{Z}[X]$
- PLWE^{φ_n} is at least as hard as exponentially many PLWE^f, in the case of power-of-two cyclotomic polynomial φ_n

- * characterize $\beta \in \mathbb{Z}[\zeta_n]$ s.t. $\phi_n = f_\beta \circ g_\beta$
- \star find $\beta \in \mathbb{Z}[\zeta_n]$ for which the matrix \mathbf{AT}_{g_β} has small norm
- \star find the hardest instance of PLWE

Thank you.

Mădălina Bolboceanu

Relating different Polynomial-LWE problems

SECITC 2018 21 / 21

э

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A