Relating different Polynomial-LWE problems

Mădălina Bolboceanu

SECITC 2018

Bitdefender

This work

- We give relations between the hardness of PLWE f and PLWE h for different polynomials f and h.
- We find a polynomial f for which:

$$
\begin{array}{ll}
\text { PLWE }^{f} \text { at least as hard as } \quad \text { PLWE }^{h} \\
& \text { for exponentially many polynomials } h
\end{array}
$$

Outline

(1) Lattices in cryptography

(2) Contribution

(3) Impact

Lattices

Lattice

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be linearly independent vectors from \mathbb{R}^{m}. Then

$$
L=L\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\left\{\sum_{i=1}^{n} a_{i} \mathbf{v}_{i} \mid a_{i} \in \mathbb{Z}\right\}
$$ is the lattice generated by them.

$\lambda_{1}(L):=$ the length of a shortest nonzero vector from L.

ApproxSVP ${ }_{\gamma}$

Find a nonzero vector $x \in L$ s.t. $\|\mathbf{x}\| \leq \gamma \lambda_{1}(L)$.

Learning with Errors [?]

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}, m \geq n, \alpha q>\sqrt{n}$

$$
\left\{\begin{array}{l}
\mathbf{A} \stackrel{\mu}{\hookleftarrow} \mathbb{Z}_{q}^{m \times n} \\
\mathbf{e} \hookleftarrow D_{\mathbb{Z}^{m}, \alpha q}
\end{array}\right.
$$

$\mathrm{LWE}_{q, \alpha q}$ distribution:

Search: Given LWE samples, find \mathbf{s}.
Decision: Distinguish LWE samples from uniform samples.
[?]: Solve Search- $\mathrm{LWE}_{q, \alpha q} \xrightarrow{\text { quantum }}$ Solve ApproxSVP ${ }_{\gamma}$, for $\gamma \leq \operatorname{poly}(n)$.

LWE in crypto

\checkmark quantum resistant

\checkmark all known algorithms of
ApproxSVP are exponential in n.
X large size of keys
X slow computations

Take structured matrices!

Towards efficiency

SVP in general and ideal lattices ([? ?])

Possible approaches

- A new problem which is at least as hard as exponentially many PLWE problems Middle Product Learning with Errors (MP-LWE) [?]

$$
\begin{aligned}
\text { MP-LWE at least as hard as } & \text { PLWE }^{f} \\
& \text { for exponentially many polynomials } f
\end{aligned}
$$

- The hardest instances of PLWE

Possible approaches

- A new problem which is at least as hard as exponentially many PLWE problems Middle Product Learning with Errors (MP-LWE) [?]

$$
\begin{aligned}
\text { MP-LWE at least as hard as } & \text { PLWE }^{f} \\
& \text { for exponentially many polynomials } f
\end{aligned}
$$

- The hardest instances of PLWE

Outline

(1) Lattices in cryptography

(2) Contribution

Our results

- We find a reduction from PLWE^{f} to $\mathrm{PLWE}^{f \circ g}$, for arbitrary monic polynomials f and g in $\mathbb{Z}[X]$.
- We notice interesting consequences of this reduction involving cyclotomic polynomials.

Polynomial LWE [?]

$f \in \mathbb{Z}[X]$, monic, $\operatorname{deg} f=n, q$ prime.
$R:=\mathbb{Z}[X] /(f), R_{q}:=R / q R \simeq \mathbb{Z}_{q}[X] /(f)$.
Let $s \in R_{q}$.

$$
\text { PLWE }_{q, D_{\alpha q}}^{f} \text { distribution : }\left\{\begin{array}{l}
a \stackrel{u}{\hookleftarrow} R_{q} \\
e \hookleftarrow D_{\alpha q} \text { over } \mathbb{R}^{n} \simeq \mathbb{R}[X] /(f) \\
\text { output: }(a, a \cdot s+e \bmod q R)
\end{array}\right.
$$

Search: Given PLWE samples, find s.
Decision: Distinguish PLWE samples from uniform samples.

Reduction from PLWE^{f} to $\mathrm{PLWE}^{f \circ g}$

$f, g \in \mathbb{Z}[X]$, monic, $\operatorname{deg} f=m, \operatorname{deg} g=n$.
We consider the $m n \times m n$ matrix:

$$
\mathbf{T}_{g}=\left(\begin{array}{llllllllll}
1 & \ldots & g^{m-1} & X & \ldots & X g^{m-1} & \ldots & X^{n-1} & \ldots & X^{n-1} g^{m-1}
\end{array}\right)
$$

Our main result

- It holds both in search and decision variants.

Proof (sketch)

Main idea: a map T sending PLWE f to PLWE $^{f o g}$ and uniform to uniform

- $\left\{\left(a_{i}^{*}, b_{i}^{*}\right)\right\}_{i \in[n-1]} \hookleftarrow$ PLWE f or uniform
- $\tilde{s}_{1}, \tilde{s}_{2}, \ldots, \tilde{s}_{n-1} \stackrel{\longleftrightarrow}{\hookleftarrow} \mathbb{Z}_{q}[X] /(f)$

$$
\begin{gathered}
\left(a_{j}, b_{j}\right) \xrightarrow{T}\left(\tilde{a}_{j}, \tilde{b}_{j}\right) \\
\tilde{a}_{j}=a_{j} \circ g+X a_{1}^{*} \circ g+\ldots+X^{n-1} a_{n-1}^{*} \circ g \\
\tilde{b}_{j}=b_{j} \circ g+X b_{1}^{*} \circ g+\ldots+X^{n-1} b_{n-1}^{*} \circ g+\tilde{a}_{j} \sum_{i \in[n-1]} X^{i} \tilde{s}_{i} \circ g
\end{gathered}
$$

\star uniform \xrightarrow{T} uniform

Outline

(1) Lattices in cryptography

(3) Impact

Relating PLWE^{f} for cyclotomic $f^{\prime} \mathrm{s}$

- cyclotomics in crypto: e.g. homomorphic schemes [?], [?], key exchange schemes [?]

$$
\begin{array}{ll}
\text { - } \zeta_{n}:=e^{2 \pi i / n} \in \mathbb{C}, & \text { rad }(n):=p_{1} p_{2} \cdot \ldots \cdot p_{r} \\
\phi_{n}(X)=\prod_{k \in \mathbb{Z}_{n}^{*}}\left(X-\zeta_{n}^{k}\right) \in \mathbb{Z}[X] & \text { if } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdot \ldots \cdot p_{r}^{\alpha_{r}}
\end{array}
$$

\star Using $\phi_{n}(X)=\phi_{\operatorname{rad}(n)}\left(X^{n / \operatorname{rad}(n)}\right)$

$\mathrm{PLWE}_{q, D_{\alpha q}}^{\phi_{n}}$	at least as hard as	$\mathrm{PLWE}_{q, D_{\alpha q}}^{\phi_{\text {rad }(n)}}$		
given k samples			\quad	$\operatorname{given} k+\frac{n}{\operatorname{rad}(n)}-1$ samples
:---	:---			

\star Using $\phi_{n}(X)=\phi_{p}\left(X^{n / p}\right)$, for $n=p^{r}, p$ prime

$$
\begin{array}{lll}
\mathrm{PLWE}_{q, D_{\alpha q}}^{\phi_{n}} & \text { at least as hard as } & \mathrm{PLWE}_{q, D_{\alpha q}}^{\phi_{p}} \\
\text { given } k \text { samples } & & \text { given } k+\frac{n}{p}-1 \text { samples }
\end{array}
$$

Reductions to $\mathrm{PLWE}^{\phi_{n}}$

- $\beta \in \mathbb{Z}\left[\zeta_{n}\right], f_{\beta}:=$ the minimal polynomial of β over $\mathbb{Q}, f_{\beta} \in \mathbb{Z}[X]$ $g_{\beta} \in \mathbb{Z}[X]$ s.t. $\beta=g_{\beta}\left(\zeta_{n}\right)$
$\operatorname{PLWE}_{q, D}^{\phi_{\alpha q}} \sqrt{\boldsymbol{T}_{g_{\beta}} \boldsymbol{T}_{g_{\beta}}^{t}}$ at least as hard as $\operatorname{PLWE}_{q, D_{\alpha q}}^{f_{\beta}} \quad \begin{aligned} & \text { given } k+\operatorname{deg} g_{\beta}-1 \text { samples } \\ & \text { given } k \text { samples }\end{aligned} \quad$ for any $\beta \in \mathbb{Z}\left[\zeta_{n}\right]$ s.t. $\phi_{n}=f_{\beta} \circ g_{\beta}$
- Example of β 's: $n=2^{t}, \beta=\zeta_{n}^{2^{u}}$. Then $f_{\beta}=\phi_{2^{t-u}}$ and $g_{\beta}=X^{2^{u}}$, so $\phi_{n}=f_{\beta} \circ g_{\beta}$.
- In general, $\phi_{n} \mid f_{\beta} \circ g_{\beta}$.

In the case of power-of-two cyclotomic ϕ_{n} :
\star Let \mathbf{A} be a $\varphi(n) \times d$ matrix, $d \geq \varphi(n)$,

$$
\mathbf{A}_{i, j}=\left\{\begin{array}{l}
(-1)^{k} \text { if } j=\varphi(n) \cdot k+i \\
0 \text { else }
\end{array}\right.
$$

$\mathrm{PLWE}_{D_{q, \alpha q \sqrt{G G}}{ }^{\phi_{n}}}$	at least as hard as
given k samples	$\mathrm{PLE}_{D_{q, \alpha q}}^{f_{\beta}}$
	given $k+\operatorname{deg} f_{\beta} \circ g_{\beta}-1$ samples
$\mathbf{G}:=\mathbf{A T}_{g_{\beta}}$	for any $\beta \in \mathbb{Z}\left[\zeta_{n}\right]$ s.t. g_{β} is monic

Conclusions and future work

- $\mathrm{PLWE}^{f \circ g}$ is at least as hard as PLWE ${ }^{f}$, for any monic $f, g \in \mathbb{Z}[X]$
- $\mathrm{PLWE}^{\phi_{n}}$ is at least as hard as exponentially many PLWE^{f}, in the case of power-of-two cyclotomic polynomial ϕ_{n}
\star characterize $\beta \in \mathbb{Z}\left[\zeta_{n}\right]$ s.t. $\phi_{n}=f_{\beta} \circ g_{\beta}$
\star find $\beta \in \mathbb{Z}\left[\zeta_{n}\right]$ for which the matrix $\mathbf{A T}_{g_{\beta}}$ has small norm
* find the hardest instance of PLWE

Questions?

Thank you.

