
Private Set Intersection

Mădălina Bolboceanu

Workshop on Selected Topics in Cryptography
March 23, 2022

What is this talk
about?

• Our Python implementation of a PSI protocol
https://github.com/bit-ml/Private-Set-Intersection.

• This protocol was published by a team from
Microsoft Research and academia

https://eprint.iacr.org/2017/299.pdf
https://eprint.iacr.org/2018/787.pdf

Outline

• 1. Motivation
• 2. Private Set Intersection (PSI)
• 3. Homomorphic Encryption (HE)
• 4. How to use HE to get PSI

• 5. The PSI protocol
• 6. Our Python implementation
• 7. Concluding remarks

1. Motivation

Question: who has WhatsApp installed in my contact list?

The privacy of WhatsApp is protected.

WhatsApp learns Client's list of contacts.

Client WhatsApp Server

list of Client's contacts

contacts who have WhatsApp installed

2. Private Set
Intersection (PSI)

What is PSI?
… An interactive crypto protocol.

Alice Bob

A B

Bob learns nothing about set A.Alice learns and nothing else about set B.

Other use cases of PSI

DNA private matching

Measuring ads efficiency

Checking leaked passwords

3. Homomorphic
Encryption (HE)

Homomorphic Encryption: an amazing tool

10

Compute () = 9%

private data
9%

Our blogpost on HE: https://bit-ml.github.io/blog/post/homomorphic-encryption-toy-implementation-in-python/

DNA analysis

What is the Compute function about?

11

... Additions ...

x x

y y

x+y x+y

x

y

x

+ x+y x+y

+

public key

secret key

What is the Compute function about?

12

x x

y y

x*y x*y

x

y

x

* x*y x*y

+

public key

secret key

… and multiplications

4. How to use HE to get
PSI

A simple case: Just one friend…

14

y =

y

y - x) = r(y-x)r * (

Choose a random nonzero r.

r(y-x)

Decrypt and get r(y-x).

If it is 0, y=x.
Else, y!=x.

if r stays secret to Alice, r(y-x) will look random to Alice and hence won't get any information on x.

x =

x, y, r integers.

One friend, many friends...

15

y =

y

Choose a random nonzero r.

x9 =

...
x1 =

x0 =

y - x0) * (r * (

Decrypt and get r(y-x0)(y-x1)…(y-x9).

y - x1) *…* (y - x9)

r(y-x0)(y-x1)…(y-x9)=

r(y-x0)(y-x1)…(y-x9)

Compute

If it is 0, y is among Bob's friends. Else, y is not.

y, x0, x1, …, x9, r integers.

Warnings

16

y y yyy y y y

A typical HE scheme can't support too many multiplications.

The communication increases linearly with the number of friends Alice has.

How to make the protocol more practical?

**

*
Decrypt

y8

multiplicative depth = 3

5. The PSI protocol

Meet the players of the PSI protocol

Client holds a set Y.
Client wants to learn X Y.

Server holds a set X.

How large can the server's database be?

19

y y yyy y y y

So, only 8 elements?
But, in general, the server has thousands of elements ...

How to deal with this?

**

*
Decrypt

y8

multiplicative depth = 3

1. Hashing

20

X0

Xm-1

X2

X1

Y0

Ym-1

Y2

Y1

... ...

Now each Xi can have at most 8 elements.
Run the PSI protocol for each pair (Xi, Yi).

A bin: same hash value

Server (X) Client (Y)
Suppose X, Y subsets of U. Partition X and Y using a hash function h : U -> {0,1,…,m-1}.

About hashing

21

yx0 x1 x2 x3

C applies Cuckoo hashing with 3 hash functions.
No collision if m ~ 1.5 * |Y| w.h.p.

S applies simple hashing using same functions.
B is chosen such that the hashing almost never fails.

Both C and S apply padding.

Server (X) Client (Y)

B

X0

X2

X1

Xm-2

Xm-1

Y0

Y1

Y2

Ym-2

Ym-1

2. Partitioning and finding the polynomials

22

Server partitions each bin into α mini bins and associates to each of them a polynomial.

2 7

(x-2) * (x-7) = 1*x2 -9*x + 14

1 -9 14

At this stage...

23

Server and Client can repeat the initial PSI protocol

for every

and every corresponding .

We reduced the degrees of polynomials involved.

The Server to Client communication is increased by a factor of α.

3. Windowing: no need to reduce degrees that much

24

y y yyy y y y

** **

* *

*
Decrypt

y8

depth = 3

y y2 y16y8y4 y32 y64 y128

** **

* *

*
Decrypt

y256

Client can send y y2 y128 instead of just y

About windowing

Server can have a larger database.

It increases the Client to Server communication.

Client can further lower the depth if he uses base 2L instead of base 2.

25

How windowing is used

26

y2y y128
...

Suppose a mini bin has 255 elements.

Take P the associated polynomial of the mini bin and its coeffs,
p0, …, p255.
For each k ≤ 255:

Write k = k0 + k1 * 2 + … + k7 * 27.
Compute =()k0 *()k1*…*()k7

yk y y2 y128

P(y)Compute = <(p0,…,p255), (1, ,…,)>y y255

P(y)
Decrypt.
If P(y) = 0, then y is in the mini bin.

a windowing base

4. Batching

CRT-like encoding

Client "batches" many elements into one element
to encrypt.

Server "batches" the corresponding mini bins and
evaluates their polynomials P1 and P2 at once.

y1

y2

1

1 b1 b0

a1 a0P1

P2

y yEncode

About batching

Server performs Single Input Multiple Data (SIMD) operations on ciphertexts.

28

It reduces the Client to Server communication.

It reduces the Server computation time.

y1

y2
y y

Encode Homomorphic

evaluation of P
P(y) P(y)

P(y2)

Decode P(y1)

How batching is used

29

1

1 b1 b0

a1 a0P1

P2

Encode

p2 p1 p0

y1

y2
y yEncode

y1
2

y2

y2

Encode

y2
2

y

y2

p2 * + p1 * + p0y2 y

Decrypt p2* y2 + p1 * y + p0

Decode

[P1(y1), P2(y2)]

Client can check simultaneously if P1(y1) = 0 (i.e. y1 is in the 1st mini bin) and P2(y2) = 0 (i.e. y2 is in the 2nd mini bin).

Security

30

knows and randomness used in the HE scheme.

can learn info about the polynomials of the server.

can learn info about server's set X.

Oblivious PRF assures privacy against malicious client!

31

Server: X, a secret key .

Computes X' = X

OPRF Layer

Y Sets Y' = Y

Client: Y.

learns nothing about X from X' unless she knows .

About OPRF

32

Server: X, a secret key .

Computes X' = X

OPRF Layer

Y Sets Y' = Y

PSI protocolX' Y'

Gets X' Y' X Y

It is a Diffie-Helmann-like protocol using elliptic curves point additions.

Apply OPRF
before PSI!

6. Our Python
implementation

joint work withNirvana & Radu

• We use TenSEAL [1], a Python library for doing HE operations, built on top of Microsoft SEAL.

• We use Brakerski-Fan-Vercauteren12 homomorphic encryption scheme [2].

[1] A. Benaissa, B. Retiat, B. Cebere, A.E. Belfedhal, "TenSEAL: A Library for Encrypted Tensor Operations Using
Homomorphic Encryption", ICLR 2021 Workshop on Distributed and Private Machine Learning,
https://github.com/OpenMined/TenSEAL.

[2] J. Fan, F. Vercauteren, Somewhat Practical Fully Homomorphic Encryption, https://eprint.iacr.org/2012/144.pdf

34

Our implementation

35

Server Client

• OPRF encoding
• Simple hashing
• Partitioning
• Finding the polynomials
• Batching

OPRF interaction

Send query

• Polynomial evaluations
Send answer

Short recap

offline

online

• OPRF encoding

• OPRF computations
• Cuckoo hashing
• Batching
• Windowing

• Find the intersection

36

Time and communication size for |C| = 5000, |S| = 1 mil.

Time Client (C) Server (S)

online 1 s 3 s

offline 1 s 90 s

Communication C->S: 5 MB

S->C : 7 MB

Offline/Online time for the Client is always "small".

37

Server size 1 mil., time/communication trade-off

38

Server offline time

7. Concluding remarks

Takeaway

• Skipped many details of the protocol/ implementation.

Blogpost: https://bit-ml.github.io/blog/post/private-set-intersection-an-implementation-in-python/.

Code: https://github.com/bit-ml/Private-Set-Intersection.

• Many computations can be further parallelized.

• Considerable speed-up if you write it in C or C++.

40

PSI is a cool primitive with many interesting real world applications.

Many recent optimizations

41

Microsoft Research & academia published a new paper:

https://eprint.iacr.org/2021/1116.pdf.

They proposed and implemented in C++ several improvements of the previous protocol:

https://github.com/microsoft/APSI/.

Optimizations include:

- a novel way of computing polynomial evaluations;

- a new windowing-equivalent procedure, etc.

The Server computation time is improved.

The Client to Server communication is reduced.

Improving windowing: using global postage bases

42

y2y y2^log(D)
...

Suppose a mini bin has D elements.

Server recovers all powers: ...

a windowing base

y yD Client sends log(D) powers.
Can she send less?

Improving windowing: using postage stamp bases

43

y2y y2^log(D)
...

Suppose a mini bin has D elements.
a windowing base

Client sends log(D) powers.
Can she send less?

The global postage stamp problem:
Given h, k integers,
find 1 = a1 < a2 < … < ak integers, called extremal postage stamp basis,
such that any 1≤ b ≤ D can be written as a sum of (at most) h ai's, with possible repetition, and D is as large as possible.

Example: h = 4, k = 3: {1, 5, 8} -> can recover any power D ≤26 using circuits of depth ≤2.

Server recovers all powers: ...y yD

Improving windowing: using postage stamp bases

44

y2y y2^log(D)
...

Suppose a mini bin has D elements.
a windowing base

Client sends log(D) powers.
Can she send less?

The global postage stamp problem:
Given h, k integers,
find 1 = a1 < a2 < … < ak integers, called extremal postage stamp basis,
such that any 1≤ b ≤ D can be written as a sum of (at most) h ai's, with possible repetition, and D is as large as possible.

Unknown complexity class!
Brute-forced solutions for small instances by Challis and Robinson
https://cs.uwaterloo.ca/journals/JIS/VOL13/Challis/challis6.pdf

Server recovers all powers: ...y yD

Open problems

• Find non-trivial algorithms for computing global postage stamp bases.

• Apply the optimizations for other applications such as:
• PSI with computation (e.g. Private count of common elements)
• Private Information Retrieval (PIR)

45

Thank you!

