On Algebraic Embedding for Unstructured Lattices

Madalina Bolboceanu ${ }^{1}$, Zvika Brakerski ${ }^{2}$, Devika Sharma ${ }^{2}$
${ }^{1}$ Bitdefender, Romania, ${ }^{2}$ Weizmann Institute of Science, Israel
PKC, April 2024

Outline of this talk

- Learning with Errors and (some of) its algebraic friends
- State of the art

Our contributions

- Improving Order-LWE (OLWE) hardness
- Gradient of hardness from Ring-LWE to LWE

Intro

Lattices

Lattice

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be linearly independent vectors from \mathbb{R}^{m}. Then

$$
L=L\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right)=\left\{\sum_{i=1}^{n} a_{i} \mathbf{v}_{i} \mid a_{i} \in \mathbb{Z}\right\}
$$

is the lattice generated by them.

ApproxSVP ${ }_{\gamma}$

Find a nonzero vector $\mathbf{v} \in L$ s.t.

$$
\|\mathbf{v}\| \leq \gamma \min _{\mathbf{x} \in L \backslash\{0\}}\|\mathbf{x}\|
$$

$\gamma=\operatorname{poly}(n) \Rightarrow \checkmark$ quantum resistant

Learning with Errors (LWE) [Reg05]

LWE

- $q=\operatorname{poly}(n)$
- ψ distribution which produces "short" elements in \mathbb{Z}_{q} w.h.p. (e.g. D_{α})

$$
\mathbf{s} \in \mathbb{Z}_{q}^{n}
$$

$$
\begin{gathered}
A_{, \psi} \text { distribution } \\
\left\{\begin{array}{l}
\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right) \\
e \hookleftarrow \psi
\end{array}\right. \\
\left(\mathbf{a}, \frac{1}{q}\langle\mathbf{a}, \mathbf{s}\rangle+e \bmod \mathbb{Z}\right) .
\end{gathered}
$$

Search: Given m samples from $A_{s, \psi}$, find s.
Decision: Distinguish between m samples from $A_{\mathrm{s}, \psi}$ and $U\left(\mathbb{Z}_{q}^{n} \times \mathbb{R} / \mathbb{Z}\right)$.

Learning with Errors (LWE) [Reg05]

LWE

- $q=\operatorname{poly}(n)$
- ψ distribution which produces "short" elements in \mathbb{Z}_{q} w.h.p. (e.g. D_{α})

$$
\mathbf{s} \in \mathbb{Z}_{q}^{n}
$$

$A_{s, \psi}$ distribution

$$
\begin{gathered}
\quad\left\{\begin{array}{l}
\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right) \\
e \hookleftarrow \psi
\end{array}\right. \\
\left(\mathbf{a}, \frac{1}{q}\langle\mathbf{a}, \mathbf{s}\rangle+e \bmod \mathbb{Z}\right) .
\end{gathered}
$$

Search: Given m samples from $A_{\mathrm{s}, \psi}$, find s .
Decision: Distinguish between m samples from $A_{\mathrm{s}, \psi}$ and $U\left(\mathbb{Z}_{q}^{n} \times \mathbb{R} / \mathbb{Z}\right)$.

Learning with Errors (LWE) [Reg05]

LWE

- $q=\operatorname{poly}(n)$
- ψ distribution which produces "short" elements in \mathbb{Z}_{q} w.h.p. (e.g. D_{α})
$\mathrm{s} \in \mathbb{Z}_{q}^{n}$
$A_{s, \psi}$ distribution
$\left\{\begin{array}{l}\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right) \\ e \hookleftarrow \psi\end{array}\right.$
(a, $\frac{1}{9}\langle\mathbf{a}, \mathrm{~s}\rangle+e \bmod \mathbb{Z}$).

Search: Given m samples from $A_{\mathrm{s}, \psi}$, find s .
Decision: Distinguish between m samples from $A_{\mathrm{s}, \psi}$ and $U\left(\mathbb{Z}_{q}^{n} \times \mathbb{R} / \mathbb{Z}\right)$.

X not so efficient

Add structure: Ring-LWE [LPR10], Order-LWE [BBPS19]

q integer 1

$f \in \mathbb{Z}[x]$ monic, irreducible, degree n.
$K=\mathbb{Q}[x] /(f)$ number field.
ψ distribution which produces "short" elements in K w.h.p.

Add structure: Ring-LWE [LPR10], Order-LWE [BBPS19]

q integer 1

$f \in \mathbb{Z}[x]$ monic, irreducible, degree n.
$K=\mathbb{Q}[x] /(f)$ number field.
ψ distribution which produces "short" elements in K w.h.p.

$$
\begin{gathered}
\mathcal{O}_{K} \text { ring of integers } \\
\text { e.g. } \mathcal{O}_{K}=\mathbb{Z}[x] /(f) \text {, if } f=\text { cyclotomic }
\end{gathered}
$$

Add structure: Ring-LWE [LPR10], Order-LWE [BBPS19]

q integer 1
$f \in \mathbb{Z}[x]$ monic, irreducible, degree n.
$K=\mathbb{Q}[x] /(f)$ number field.
ψ distribution which produces "short" elements in K w.h.p.
\mathcal{O}_{K} ring of integers
\mathcal{O}_{K}^{\vee} its dual

RLWE

$$
s \in \mathcal{O}_{K, q}^{\vee}:=\mathcal{O}_{K}^{V} / q \mathcal{O}_{K}^{\vee}
$$

$\mathcal{A}_{, \psi}$ distribution

$$
\begin{aligned}
& \quad\left\{\begin{array}{l}
a \hookleftarrow U\left(\mathcal{O}_{K, q}\right) \\
e \hookleftarrow \psi
\end{array}\right. \\
& \left(a, \frac{1}{q} a \cdot s+e \bmod \mathcal{O}_{K}^{V}\right) .
\end{aligned}
$$

Add structure: Ring-LWE [LPR10], Order-LWE [BBPS19]

q integer 1

$f \in \mathbb{Z}[x]$ monic, irreducible, degree n.
$K=\mathbb{Q}[x] /(f)$ number field.
ψ distribution which produces "short" elements in K w.h.p.

$$
\begin{gathered}
\mathcal{O}_{K} \text { ring of integers } \\
\mathcal{O}_{K}^{\vee} \text { its dual }
\end{gathered}
$$

\mathcal{O} order (subring of \mathcal{O}_{K} of finite index) e.g. $\mathcal{O}=\mathbb{Z}[x] /(f), \mathcal{O}_{K}$

RLWE

$$
s \in \mathcal{O}_{K, q}^{\vee}:=\mathcal{O}_{K}^{V} / q \mathcal{O}_{K}^{\vee}
$$

$\mathcal{A}_{, \psi}$ distribution

$$
\begin{gathered}
\left\{\begin{array}{l}
a \hookleftarrow U\left(\mathcal{O}_{K, q}\right) \\
e \hookleftarrow \psi
\end{array}\right. \\
\left(a, \frac{1}{q} a \cdot s+e \bmod \mathcal{O}_{K}^{V}\right) .
\end{gathered}
$$

Add structure: Ring-LWE [LPR10], Order-LWE [BBPS19]

q integer 1

$f \in \mathbb{Z}[x]$ monic, irreducible, degree n.
$K=\mathbb{Q}[x] /(f)$ number field.
ψ distribution which produces "short" elements in K w.h.p.
\mathcal{O}_{K} ring of integers
\mathcal{O}_{K}^{V} its dual

RLWE

$$
s \in \mathcal{O}_{K, q}^{\vee}:=\mathcal{O}_{K}^{\vee} / q \mathcal{O}_{K}^{\vee}
$$

$\mathcal{A}_{, \psi, \psi}$ distribution
$\left\{\begin{array}{l}a \hookleftarrow U\left(\mathcal{O}_{K, q}\right) \\ e \hookleftarrow \psi\end{array}\right.$
(a, $\left.\frac{1}{q} a \cdot s+e \bmod \mathcal{O}_{K}^{\vee}\right)$.
\mathcal{O} order (subring of \mathcal{O}_{K} of finite index)
\mathcal{O}^{\vee} its dual

OLWE

$$
s \in \mathcal{O}_{q}^{\vee}:=\mathcal{O}^{\vee} / q \mathcal{O}^{\vee}
$$

$\mathcal{O}_{s, \psi}$ distribution

$$
\begin{gathered}
\left\{\begin{array}{l}
a \hookleftarrow U\left(\mathcal{O}_{q}\right) \\
e \hookleftarrow \psi
\end{array}\right. \\
\left(a, \frac{1}{q} a \cdot s+e \bmod \mathcal{O}^{\vee}\right) .
\end{gathered}
$$

Search and Decision problems are defined as before.

Add structure: Ring-LWE [LPR10], Order-LWE [BBPS19]

q integer 1
$f \in \mathbb{Z}[x]$ monic, irreducible, degree n.
$K=\mathbb{Q}[x] /(f)$ number field.
ψ distribution which produces "short" elements in K w.h.p.

$$
\begin{aligned}
& \mathcal{O}_{K} \text { ring of integers } \mathcal{O} \text { order (subring of } \mathcal{O}_{K} \text { of finite index) } \\
& \mathcal{O}_{K}^{\vee} \text { its dual } \\
& \mathcal{O}^{\vee} \text { its dual } \\
& s \in \mathcal{O}_{K, q}^{\vee}:=\mathcal{O}_{K}^{\vee} / q \mathcal{O}_{K}^{\vee} \\
& \mathcal{A}_{, \psi} \text { distribution } \\
& \left\{\begin{array}{l}
a \hookleftarrow U\left(\mathcal{O}_{K, q}\right) \\
e \hookleftarrow \psi
\end{array}\right. \\
& \left(a, \frac{1}{q} a \cdot s+e \bmod \mathcal{O}_{K}^{\vee}\right) . \\
& s \in \mathcal{O}_{q}^{\vee}:=\mathcal{O}^{\vee} / q \mathcal{O}^{\vee} \\
& \mathcal{O}_{s, \psi} \text { distribution } \\
& \left\{\begin{array}{l}
a \hookleftarrow U\left(\mathcal{O}_{q}\right) \\
e \hookleftarrow \psi
\end{array}\right. \\
& \text { (a, } \left.\frac{1}{q} a \cdot s+e \bmod \mathcal{O}^{\vee}\right) \text {. }
\end{aligned}
$$

Search and Decision problems are defined as before.

State of the art and contributions

$$
\xrightarrow{\text { Approx-SVP }} \begin{aligned}
& \text { on } \mathcal{O}_{K} \text { ideals }
\end{aligned} \xrightarrow{\text { dLPR10, PRSD17 }]} \xrightarrow{\text { decision RLWE }}
$$

State of the art and contributions

Improving OrderLWE hardness

How to get OLWE hardness?

$$
\left.\begin{array}{c}
\text { Approx-SVP } \\
\text { on all } \mathcal{O} \text { ideals }
\end{array}\right) \xrightarrow{\left(q,\left[\mathcal{O}_{K}: \mathcal{O}\right]\right)=1} \text { decision OLWE }
$$

How to get OLWE hardness?

Follow [PRSD17, BBPS19] hardness blueprint:

- focus only on the BDD-to-OLWE conversion.

BDD-to-OLWE conversion

Discrete Gaussian over $\mathcal{I} \subseteq \mathcal{O}: \quad z \in \mathcal{I}$

BDD instance:

$$
t=x+e^{\prime}, x \in \mathcal{I}^{\vee}
$$

Idea: 'Cancel' \mathcal{I} : find compatible maps:

$$
\begin{gathered}
z \in \frac{\mathcal{I}}{q \mathcal{I}} \underset{f}{\xrightarrow{\sim}} a \in \frac{\mathcal{O}}{q \mathcal{O}} \\
x \in \frac{\mathcal{I}^{\vee}}{q \mathcal{I}^{\vee}} \xrightarrow[g^{-1}]{\sim} s \in \frac{\mathcal{O}^{\vee}}{q \mathcal{O}^{\vee}}
\end{gathered}
$$

BDD-to-OLWE conversion

Discrete Gaussian over $\mathcal{I} \subseteq \mathcal{O}: \quad z \in \mathcal{I}$
$=$ OLWE samples $\left(a, \frac{1}{q} a \cdot s+e \bmod \mathcal{O}^{\vee}\right)$

Idea: 'Cancel' \mathcal{I} : find compatible maps:

$$
\begin{gathered}
z \in \frac{\mathcal{I}}{q \mathcal{I}} \underset{f}{\xrightarrow{\sim}} a \in \frac{\mathcal{O}}{q \mathcal{O}} \\
x \in \frac{\mathcal{I}^{\vee}}{q \mathcal{I}^{\vee}} \xrightarrow[g^{-1}]{\sim} s \in \frac{\mathcal{O}^{\vee}}{q \mathcal{O}^{\vee}}
\end{gathered}
$$

Cancellation Lemma [BBPS19]

f and g exist for a subset of \mathcal{O} ideals \mathcal{I}.

Can we get f and g for all \mathcal{I}^{\prime} s?

New Cancellation Lemma

f and g exist ${ }^{3}$, for all \mathcal{O} ideals, if $\left(q,\left[\mathcal{O}_{K}: \mathcal{O}\right]\right)=1$.
efficiently computable and invertible, if given advice on K and factorization of $q \mathcal{O} \equiv$

Can we get f and g for all \mathcal{I} 's?

New Cancellation Lemma
 f and g exist ${ }^{3}$, for all \mathcal{O} ideals, if $\left(q,\left[\mathcal{O}_{K}: \mathcal{O}\right]\right)=1$.

Idea:

efficiently computable and invertible, if given advice on K and factorization of $q \mathcal{O} \equiv \equiv$

Can we get f and g for all \mathcal{I} 's?

New Cancellation Lemma

f and g exist ${ }^{3}$, for all \mathcal{O} ideals, if $\left(q,\left[\mathcal{O}_{K}: \mathcal{O}\right]\right)=1$.

Idea:

- Embed \mathcal{I} in a good \mathcal{P} such that:
- can apply [BBPS19]: $\frac{\mathcal{P}}{q \mathcal{P}} \xrightarrow{\sim} \frac{\mathcal{O}}{q \mathcal{O}}$.
- can apply [PP19]: $\frac{\mathcal{I}}{q \mathcal{I}} \stackrel{\sim}{\hookrightarrow} \frac{\mathcal{P}}{q \mathcal{P}}$.

How to find a good \mathcal{P} :

- Jordan-Hölder filtration
efficiently computable and invertible, if given advice on K and factorization of $q \mathcal{O} \equiv$

Can we get f and g for all \mathcal{I} 's?

New Cancellation Lemma

f and g exist ${ }^{3}$, for all \mathcal{O} ideals, if $\left(q,\left[\mathcal{O}_{K}: \mathcal{O}\right]\right)=1$.

Idea:

- Embed \mathcal{I} in a good \mathcal{P} such that:
- can apply [BBPS19]: $\frac{\mathcal{P}}{q \mathcal{P}} \xrightarrow{\sim} \frac{\mathcal{O}}{q \mathcal{O}}$.
- can apply [PP19]: $\frac{\mathcal{I}}{q \mathcal{I}} \stackrel{\sim}{\hookrightarrow} \frac{\mathcal{P}}{q \mathcal{P}}$.
- Compose maps to get f (and g).
efficiently computable and invertible, if given advice on K and factorization of $q \mathcal{O}$

How to get RLWE hardness?

Idea: Use $t \in \mathcal{C}_{\mathcal{O}}=\left\{x \in K \mid x \mathcal{O}_{K} \subseteq \mathcal{O}\right\}$ (the conductor ideal of \mathcal{O}):

$$
(a, b) \longmapsto(a, t b) .
$$

- similar proof as in [RSW18, BBPS19].
- existence of short t : [RSW18, BBPS19].

Gradient of hardness from Ring-LWE to LWE

Gradient of hardness

K number field
q LWE modulus, p coprime with q. $p \mathcal{O}_{K}=\mathcal{P}_{1} \cdot \ldots \cdot \mathcal{P}_{t}$, for prime ideals \mathcal{P}_{i}. Then,

$$
\mathcal{O}_{K} \supseteq \mathbb{Z}+\mathcal{P}_{1} \supseteq \mathbb{Z}+\mathcal{P}_{1} \cdot \mathcal{P}_{2} \supseteq \ldots \supseteq \mathbb{Z}+p \mathcal{O}_{K}
$$

LWE
all black arrows are special cases of [PP19].

Gradient of hardness

K number field
q LWE modulus, p coprime with q.
$p \mathcal{O}_{K}=\mathcal{P}_{1} \cdot \ldots \cdot \mathcal{P}_{t}$, for prime ideals \mathcal{P}_{i}. Then,

$$
\mathcal{O}_{K} \supseteq \mathbb{Z}+\mathcal{P}_{1} \supseteq \mathbb{Z}+\mathcal{P}_{1} \cdot \mathcal{P}_{2} \supseteq \ldots \supseteq \mathbb{Z}+p \mathcal{O}_{K}
$$

preserves error

all black arrows are special cases of [PP19].

Gradient of hardness

K number field
q LWE modulus, p coprime with q.
$p \mathcal{O}_{K}=\mathcal{P}_{1} \cdot \ldots \cdot \mathcal{P}_{t}$, for prime ideals \mathcal{P}_{i}. Then,

$$
\mathcal{O}_{K} \supseteq \mathbb{Z}+\mathcal{P}_{1} \supseteq \mathbb{Z}+\mathcal{P}_{1} \cdot \mathcal{P}_{2} \supseteq \ldots \supseteq \mathbb{Z}+p \mathcal{O}_{K}
$$

preserves error

all black arrows are special cases of [PP19].

α-drowning orders

Let $e \hookleftarrow D_{\alpha}$.
How does $e \bmod \mathcal{O}^{\vee}$ look like?

α-drowning orders

Let $e \hookleftarrow D_{\alpha}$.
How does $e \bmod \mathcal{O}^{\vee}$ look like?
Take $\left(\mathbf{e}_{0}, \ldots, \mathbf{e}_{n-1}\right)$ its coefficients w.r.t \mathbb{Z}-basis of \mathcal{O}^{\vee} and $\bmod \mathbb{Z}$.

α-drowning orders

Let $e \hookleftarrow D_{\alpha}$.
How does $e \bmod \mathcal{O}^{\vee}$ look like?
Take $\left(\mathbf{e}_{0}, \ldots, \mathbf{e}_{n-1}\right)$ its coefficients w.r.t \mathbb{Z}-basis of \mathcal{O}^{\vee} and $\bmod \mathbb{Z}$.
$\underset{\underset{\sim}{\mathcal{O}} \underset{\text { is } \alpha \text {-drowning if }}{\text { for } e \hookleftarrow D_{\alpha}}}{\text { for }}\left\{\begin{array}{l}\mathbf{e}_{0} \bmod \mathbb{Z} \leftarrow D_{\alpha \sqrt{n}} \bmod \mathbb{Z} \\ \left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n-1}\right) \mid \mathbf{e}_{0}=x \bmod \mathbb{Z}^{n-1} \stackrel{\text { s.i. }}{\approx} U\left((\mathbb{R} / \mathbb{Z})^{n-1}\right) .\end{array}\right.$

α-drowning orders

Let $e \hookleftarrow D_{\alpha}$.
How does $e \bmod \mathcal{O}^{\vee}$ look like?
Take $\left(\mathbf{e}_{0}, \ldots, \mathbf{e}_{n-1}\right)$ its coefficients w.r.t \mathbb{Z}-basis of \mathcal{O}^{\vee} and $\bmod \mathbb{Z}$.
\mathcal{O} is α-drowning if $\left\{\mathbf{e}_{0} \bmod \mathbb{Z} \leftarrow D_{\alpha \sqrt{n}} \bmod \mathbb{Z}\right.$ for $e \hookleftarrow D_{\alpha}\left\{\quad\left(\mathbf{e}_{1}, \ldots, \mathbf{e}_{n-1}\right) \mid \mathbf{e}_{0}=x \bmod \mathbb{Z}^{n-1} \stackrel{\text { s.i. }}{\approx} U\left((\mathbb{R} / \mathbb{Z})^{n-1}\right)\right.$.
$K=$ power-of-two cyclotomic, $\mathcal{O}=\mathbb{Z}+p \mathcal{O}_{K}$ is α-drowning for $p \gg \frac{1}{\alpha}$.

LWE-OLWE equivalence

Idea:

- $\left\{p_{i}\right\}_{i} \mathbb{Z}$-basis of $\mathcal{O}, p_{0}=1,\left\{p_{i}^{\vee}\right\}_{i}$ dual \mathbb{Z}-basis of \mathcal{O}^{\vee}
- $u_{1}, \ldots, u_{n-1} \hookleftarrow U(\mathbb{R} / \mathbb{Z})$:

$$
\left(\mathbf{a}, b_{0}\right) \longmapsto\left(a=\sum \mathbf{a}_{i} p_{i}, b=b_{0} p_{0}^{\vee}+\sum u_{i} p_{i}^{\vee}\right)
$$

$$
A_{s, D_{\alpha \sqrt{n}}} \text { to } \mathcal{O}_{s, D_{\alpha}}
$$

If $\left(\mathbf{a}, b_{0}=\frac{1}{q}\langle\mathbf{a}, \mathbf{s}\rangle+e_{0}\right):$
$b \stackrel{\text { s.i. }}{\approx} \frac{1}{q} a \cdot s+e$, as
$e_{0} p_{0}^{\vee}+\sum u_{i} p_{i}^{\vee} \stackrel{\text { s.i. }}{\approx} e \hookleftarrow D_{\alpha}(\mathcal{O} \alpha$-drowning $)$ $s=\sum \mathrm{s}_{i} p_{i}^{\vee}$

uniform to uniform

If $\left(\mathbf{a}, b_{0}\right) \hookleftarrow$ uniform:
$\left(a, b_{0}\right)$ uniform

Summary and follow-up works

our results hold for an ideal modulus \mathcal{Q} with coprimality properties.
[PP19] holds for same coprimality property on \mathcal{Q}.
[JL22], [JL23] hold only for integer modulus q.

Thank you.

