Algorand

Mădălina Bolboceanu

Bitdefender

theoretical research

RV/ILDS Blockchain Workshop
March 22, 2023

What is this talk about?

A protocol (Algorand*) based on Byzantine Agreement, which promises to solve the Blockchain Trilemma, and our proof-of-concept implementation of it in Python.

* proposed by Chen and Micali, 2017

Outline

1. Byzantine Agreement (BA)

a. Why BA?
b. What is BA ?
c. How to build arbitrary value-BA from binary-BA
2. The BA protocol behind Algorand
a. A very intuitive BA protocol
b. The protocol
3. Towards a practical protocol: Algorand
4. Results

Byzantine Agreement

Why BA?

BA =agreement + consistency [PeaseShostakLamport80]

malicious

b

b

b

BA = agreement + consistency [PeaseShostakLamport80]

 b

malicious

b

b

b

From binary-value BA to arbitrary-value BA

Many solutions: the trivial one, [TurpinCoan84], etc.
[Micali18] proposes a much cleaner solution:

The BA protocol behind Algorand

A very intuitive BA protocol [FeldmanMicali, 1997]

Every player i does:

1. Send \mathbf{b}_{i} to all the players, including himself.
2. Update \mathbf{b}_{i} as follows:
a) If $\#_{i}(0) \geq 2 t+1$, then $\mathbf{b}_{i}=0$
b) Else, if $\#_{i}(1) \geq 2 t+1$, then $\mathbf{b}_{i}=1$
c) Else, $\mathbf{b}_{i}=\mathbf{c}$.

Consistency: if the honest players start with the same value, they will end up with that value.

Agreement: if the honest players are not in agreement, they will be in agreement with probability $1 / 2$.

A very intuitive BA protocol [FeldmanMicali, 1997]

Every player i does:

1. Send $\mathbf{b}_{\text {; }}$ to all the players, including himself.
2. Update \mathbf{b}_{i} as follows:

- If $\#_{i}(0) \geq 2 t+1$, then $\mathbf{b}_{i}=0$
- Else, if $\#_{i}(1) \geq 2 t+1$, then $\mathbf{b}_{i}=1$
- Else, $\mathbf{b}_{i}=\boldsymbol{c}$.

c: random \&
independent bit

Algorand: it suffices a less magical coin

Consistency: if the honest players start with the same value, they will end up with that value

Agreement: if the honest players are not in agreement, they will be in agreement with probability $1 / 2$.

Algorand's less magical coin

- \quad : common info
- Sig: digital signature scheme
- H: random oracle

Every player i does:

1. Send the value $v_{i}=\operatorname{Sig}_{i}(R)$
2. Compute the player m s.t. $\mathrm{H}\left(\mathrm{v}_{m}\right) \leq \mathrm{H}\left(\mathrm{v}_{j}\right)$ for all j
3. Set $c_{i}=\operatorname{lsb}\left(H\left(v_{m}\right)\right)$

Algorand's less magical coin

- \quad : common info
- Sig: digital signature scheme
- H : random oracle

Every player i does:

1. Send the value $v_{i}=\operatorname{Sig}_{i}(R)$
2. Compute the player m s.t. $H\left(v_{m}\right) \leq H\left(v_{j}\right)$ for all j
3. Set $c_{i}=\operatorname{lsb}\left(H\left(v_{m}\right)\right)$

In the case of 2/3 honest majority, the $\boldsymbol{c}_{i}^{\prime}$'s are the same with probability $2 / 3$.
\longrightarrow The honest players reach agreement with probability $\geq 1 / 3$.

But agreement probability is just $1 / 3$, how to increase it?

... repeat the protocol with inputs(s) = outputs(s-1) for many steps s.

An

$0010001111 \ldots$
$1110001111 \ldots$
After k steps:
$\longrightarrow \operatorname{Pr}[$ agreement $] \geq 1-(2 / 3)^{k}$
$0011001111 \ldots$

010011111 1...

Once they are in agreement, they will forever be in agreement (because of Consistency).

Even if they are already in agreement, they will continue to repeat the protocol and spend unnecessary steps because they don't know that they are in agreement.

How to fix this: the actual protocol [Micali2018]

Every player i does:
step 1: Coin-Fixed-to-0 step
1.1 Send \mathbf{b}_{i} to all the players, including himself.
1.2 Update $\mathbf{b}_{\mathbf{i}}$:

- If $\#_{i}(0) \geq 2 t+1$, then $\mathbf{b}_{i}=0$, output 0 , send 0^{*} and halt
- Else, if $\#_{i}(1) \geq 2 t+1$, then $\mathbf{b}_{i}=1$
- Else, $b_{i}=0$
step 2: Coin-Fixed-to-1 step
2.1 Send \mathbf{b}_{i} to all the players, including himself.
2.2 Update \mathbf{b}_{i} :
- If $\#_{i}(1) \geq 2 t+1$, then $\mathbf{b}_{i}=1$, output 1, send 1* and halt
- Else, if $\#_{i}(0) \geq 2 t+1$, then $\mathbf{b}_{i}=0$
- Else, $\mathbf{b}_{i}=1$
step 3: Coin-Genuinely-Flipped step
3.1 Send \mathbf{b}_{i} and $\operatorname{Sig}_{i}(R$, iteration) to all the players, including himself.
3.2 Compute its \mathbf{c}_{i} and update \mathbf{b}_{i} :
- If $\#_{i}(0) \geq 2 t+1$, then $\mathbf{b}_{i}=0$
- Else, if $\#_{i}(1) \geq 2 t+1$, then $\mathbf{b}_{i}=1$
- Else, $\mathbf{b}_{i}=\boldsymbol{c}_{\boldsymbol{i}}$, increase iteration by 1 and return to step 1

Key aspects of the protocol

A. If no halting and no agreement happen until Step 3, the honest players will be in agreement at the end of Step 3 with probability $\geq 1 / 3$.
B. If, at some step, agreement holds on some bit \mathbf{b}, then it continues to hold on \mathbf{b}.
C. If, at some step, an honest player i halts, then agreement will hold at the end of the step.
step 1: Coin-Fixed-to-0 step
1.1 Send \mathbf{b}_{i} to all the players, including himself.
step 2: Coin-Fixed-to-1 step
step 3: Coin-Genuinely-Flipped step
3.1 Send \mathbf{b}_{i} and $\operatorname{Sig}_{i}(R$, iteration) to all the players, including himself.
1.2 Update $\mathbf{b}_{\mathbf{i}}$:

- If $\#_{i}(0) \geq 2 t+1$, then $\mathbf{b}_{i}=0$, output 0 , send 0^{*} and halt
- Else, if $\#_{i}(1) \geq 2 t+1$, then $\mathbf{b}_{i}=1$
- Else, $\mathrm{b}_{\mathrm{i}}=0$
2.1 Send \mathbf{b}_{i} to all the players, including himself.
2.2 Update \mathbf{b}_{i} :
- If $\#_{i}(1) \geq 2 t+1$, then $\mathbf{b}_{i}=1$, output 1 , send 1^{*} and halt
- Else, if $\#_{i}(0) \geq 2 t+1$, then $\mathbf{b}_{i}=0$
- Else, $\mathbf{b}_{i}=1$
3.2 Compute its \mathbf{c}_{i} and update \mathbf{b}_{i} :
- If $\#_{i}(0) \geq 2 t+1$, then $\mathbf{b}_{i}=0$
- Else, if $\#_{i}(1) \geq 2 t+1$, then $\mathbf{b}_{i}=1$
- Else, $\mathbf{b}_{i}=\boldsymbol{c}_{i}$, increase iteration by 1 and return to step 1

Agreement reached for many iterations.
Every player halts.

Consistency

Towards a practical BA protocol: Algorand

Moving to the real world

Algorand: consensus by committee \longrightarrow solves the Blockchain trilemma:

Scalability: only a small set of players -a committee- runs the protocol.

Decentralization: each player has the same probability to be selected in the committee.

Security: an adversary does not know who the committee is untilits reveal + the committee changes every round and step.

1

In the next slides...

a. Who can propose a new block?
b. Who actually proposes the block?
c. Who can validate the proposed block?

Only this part implemented.
d. How many can validate the proposed block?

a. Who can propose the r-th block?

Any player i s.t. $H\left(\operatorname{Sign}_{i}\left(\mathrm{~B}_{r-1}|r| 0\right)\right) \leq p_{2}$. (potential leader)

- Sig: digital signature scheme
- H : random oracle
- Anyone can check if player i is a potential leader when he reveals his signature.
- An adversary cannot predict the potential leaders.
- Any player has the same probability to become potential leader.
- p_{1} is chosen s.t at least one potential leader will be honest.
- Any player has the same probability to become potential leader.
- p_{1} is chosen s.t at least one potential leader will be honest.
malicious potential leader

b. Who actually proposes the r-th block?

The player whose $H\left(\operatorname{Sign}_{i}\left(B_{r-1}|r| 0\right)\right)$ is minimum. (leader)

c. Who can validate the r-th block?

$$
\text { Any player } i \text { s.t. } \mathrm{H}\left(\operatorname{Sign}_{i}\left(\mathrm{~B}_{r-1}|r| 1\right)\right) \leq p . \quad \text { (verifier) }
$$

- Any player has the same probability ($\sim \mathbf{p}$) to become verifier.
- An adversary cannot predict the verifiers.

Different steps of BA , different verifiers

- Only the verifiers play BA.
- The verifiers change at each step and their number varies.
- Any nonverifier has a copy of the BA messages, so he knows how to play further, if selected.

\uparrow

Different steps of BA , different verifiers

- Only the verifiers play BA.
- The verifiers change at each step and their number varies.

Issues:

a) BA requires $2 / 3$ honest majority at each step.
b) Only one block should be chosen per round.

市
d. How many can validate the r-th proposed block?

Given

- $N=\#$ players
- $h=$ ratio of honest players, in $[2 / 3,1]$
- $F=$ failure probability, small value in $(0,1)$ Find
- $n=$ expected \# verifiers s.t. with probability at least 1- F,
a) $B A$ requires $2 / 3$ honest majority at each step.
b) Only one block should be chosen per round.

Results

of our PoC Python implementation based on ideas from Algorand's whitepaper.

Sets of parameters

\#players (N)	Ratio of honest players (\boldsymbol{h})	Fail probability (F)	Expected \#verifiers (\boldsymbol{n})	Prob. of verifier $p=n / \mathbf{N}$
1000	0.8	10^{-12}	543	0.543
1000	0.8	10^{-9}	474	0.474
1500	0.8	10^{-12}	681	0.454
1500	0.8	10^{-9}	574	0.382
2000	0.8	10^{-12}	779	0.389
2000	0.8	10^{-9}	643	0.321

h vs n for $N=1000$ and $F=10^{-12}$

Ratio of honest players (\boldsymbol{h})	Expected \# verifiers (\boldsymbol{n})
0.68	982
0.7	941
0.72	880
0.74	803
0.76	717
0.78	628
0.8	543
0.82	464
0.84	392
0.86	329
0.88	274
0.9	226

Results

```
# rounds = 10 h=0.8 (ratio of honest players)
# steps = 9
F=10-12 (fail probability)
```

\#players (N)	Expected \#verifiers (n)	Time per round (avg)	Comm. per round (avg)
100	82	7.76 sec	0.05 MB
150	119	23 sec	0.17 MB
200	155	58 sec	0.38 MB
250	190	161 sec	0.64 MB
500	337	2096 sec	3.19 MB

Our crypto team at Bitdefender

Mădălina Bolboceanu

Radu Țițiu

Miruna Roșca

Andrei Pantea

Dacian Stroia

Thank you.

Appendix

Graded Consensus = graded agreement + consistency [FeldmanMicali97]

Graded Consensus = graded agreement + consistency [FeldmanMicali97]

[Micali2018] in Algorand

$n=$ expected \# of verifiers $\mathrm{B}_{r}=$ the r-th block \# steps = multiple of 3

- step 0: verifiers send BA inputs
- step $s \geq 1$: every verifier i does:
step 1
1.1 Check if he can get B_{r} from messages of previous steps.
1.2 If not, update \mathbf{b}_{i} :
- If $\#_{i}(0) \geq 2 n / 3+1$, then $\mathbf{b}_{i}=0$, output 0 , gets B_{r} and send CERT
- Else, if $\#_{i}(b) \geq 2 / 3^{*}(\mathrm{msg}$ received) +1 , then $\boldsymbol{b}_{i}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=0$
1.3 Send \mathbf{b}_{i} to all the players, including himself.
step 2
2.1 Check if he can get B_{r} from messages of previous steps.
2.2 If not, update $\mathbf{b}_{\boldsymbol{i}}$:
- If $\#_{i}(1) \geq 2 n / 3+1$, then $\mathbf{b}_{i}=1$, output 1 , gets B_{r} and send CERT
- Else, if $\#_{i}(\mathrm{~b}) \geq 2 / 3^{*}(\mathrm{msg}$ received) +1 , then $\mathbf{b}_{i}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=1$
2.3 Send \mathbf{b}_{i} to all the players, including himself.

CERT $=$ the set of $2 n / 3+1$ identical messages used in obtaining B_{r}.
step 3
3.1 Check if he can get B_{r} from messages of previous steps.
3.2 If not, update \mathbf{b}_{i} :

- If $\#_{i}(b) \geq 2 / 3^{*}(\mathrm{msg}$ received $)+1$, then $\mathbf{b}_{\boldsymbol{i}}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=\operatorname{Isb}\left(\min _{j} \mathrm{H}\left(\operatorname{Sig}_{j}\left(\mathrm{~B}_{\mathrm{r}-1}|\mathrm{r}| \mathrm{s}\right)\right.\right.$, return to step 1
3.3 Send \mathbf{b}_{i} to all the players, including himself.

[Micali2018] in Algorand

$n=$ expected \# of verifiers $\mathrm{B}_{r}=$ the r-th block \# steps = multiple of 3

- step 0: verifiers send BA inputs
- step $s \geq 1$: every verifier i does:
step 1
1.1 Check if he can get B_{r} from messages of previous steps.
1.2 If not, update \mathbf{b}_{i} :
- If $\#_{i}(0) \geq 2 n / 3+1$, then $\mathbf{b}_{i}=0$, output 0 , gets B_{r} and send CERT
- Else, if $\#_{i}(b) \geq 2 / 3^{*}(\mathrm{msg}$ received) +1 , then $\boldsymbol{b}_{i}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=0$
1.3 Send \mathbf{b}_{i} to all the players, including himself.
step 2
2.1 Check if he can get B_{r} from messages of previous steps.
2.2 If not, update $\mathbf{b}_{\boldsymbol{i}}$:
- If $\#_{i}(1) \geq 2 n / 3+1$, then $\mathbf{b}_{i}=1$, output 1 , gets B_{r} and send CERT
- Else, if $\#_{i}(\mathrm{~b}) \geq 2 / 3^{*}(\mathrm{msg}$ received) +1 , then $\mathbf{b}_{i}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=1$
2.3 Send \mathbf{b}_{i} to all the players, including himself.

CERT $=$ the set of $2 n / 3+1$ identical messages used in obtaining B_{r}.

- step s 1: every verifieridoes:
step 3
3.1 Check if he can get B_{r} from messages of previous steps.
3.2 If not, update \mathbf{b}_{i} :
- If $\#_{i}(b) \geq 2 / 3^{*}(\mathrm{msg}$ received $)+1$, then $\mathbf{b}_{\boldsymbol{i}}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=\operatorname{Isb}\left(\min _{j} \mathrm{H}\left(\operatorname{Sig}_{j}\left(\mathrm{~B}_{\mathrm{r}-1}|\mathrm{r}| \mathrm{s}\right)\right.\right.$, return to step 1
3.3 Send \mathbf{b}_{i} to all the players, including himself.
- Last step (Step 2-like): Every verifier i checks if he can get B_{r} from messages of previous steps. If not, i outputs 1 , gets B_{r} and sends CERT $=\{1\}$.

[Micali2018] in Algorand

$n=$ expected \# of verifiers $\mathrm{B}_{r}=$ the r-th block
\# steps = multiple of 3

- step 0: verifiers send BA inputs
- step $s \geq 1$: every verifier i does:
step 1
1.1 Check if he can get B_{r} from messages of previous steps.
1.2 If not, update \mathbf{b}_{i} :
- If $\#_{i}(0) \geq 2 n / 3+1$, then $\mathbf{b}_{i}=0$,
output 0 , gets B_{r} and send CERT
- Else, if $\#_{i}(b) \geq 2 / 3^{*}(\mathrm{msg}$ received $)+1$, then $\mathbf{b}_{\mathbf{i}}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=0$
1.3 Send \mathbf{b}_{i} to all the players, including himself.
-

step 2
2.1 Check if he can get B_{r} from messages of previous steps.
2.2 If not, update $\mathbf{b}_{\boldsymbol{i}}$:

- If $\#_{i}(1) \geq 2 n / 3+1$, then $\mathbf{b}_{i}=1$, output 1 , gets B_{r} and send CERT
- Else, if $\#_{i}(\mathrm{~b}) \geq 2 / 3^{*}(\mathrm{msg}$ received) +1 , then $\mathbf{b}_{i}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=1$
2.3 Send \mathbf{b}_{i} to all the players, including himself.

CERT $=$ the set of $2 n / 3+1$ identical messages used in obtaining B_{r}.
step 3
3.1 Check if he can get B_{r} from messages of previous steps.
3.2 If not, update \mathbf{b}_{i} :

- If $\#_{i}(\mathrm{~b}) \geq 2 / 3^{*}(\mathrm{msg}$ received $)+1$, then $\mathbf{b}_{i}=\mathbf{b}$
- Else, $\mathbf{b}_{i}=\operatorname{Isb}\left(\min _{j} \mathrm{H}\left(\mathrm{Sig}_{\mathrm{j}}\left(\mathrm{B}_{\mathrm{r}-1}|\mathrm{r}| \mathrm{s}\right)\right.\right.$, return to step 1

3.3 Send $\mathbf{b}_{\boldsymbol{i}}$ to all the

 players, including himself.- Last step (Step 2-like): Every verifier i checks if he can get B_{r} from messages of previous steps. If not, i outputs 1, gets B_{r} and sends CERT $=\{1\}$.
- Nonverifiers can check if they can get B_{r}, too. If not, they count $2 n / 3+1$ bits of 1 from Last step and get B_{r}.

